A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras Hn(q) of symmetric groups
نویسندگان
چکیده
We use a quantum analog of the polynomial ringZ[x1,1, . . . , xn,n] to modify the Kazhdan-Lusztig construction of irreducible Hn(q)-modules. This modified construction produces exactly the same matrices as the original construction in [Invent. Math. 53 (1979)], but does not employ the Kazhdan-Lusztig preorders. Our main result is dependent on new vanishing results for immanants in the quantum polynomial ring. Résumé. Nous utilisons un analogue quantique de l’anneau Z[x1,1, . . . , xn,n] pour modifier la construction KazhdanLusztig des modules-Hn(q) irreductibles. Cette construction modifiée produit exactement les mêmes matrices que la construction originale dans [Invent. Math. 53 (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Notre résultat principal dépend de nouveaux résultats de disparaition pour des immanants dans l’anneau polynôme de quantique. Resumen. Utilizamos un analog cuántico del anillo Z[x1,1, . . . , xn,n] para modificar la construcción de Kazhdan-Lusztig de módulos-Hn(q) irreducibles. Esta construcción modificada produce exactamente las mismas matrices que la construcción original en [Invent. Math. 53 (1979)], pero sin emplear los preórdenes de Kazhdan-Lusztig. Nuestro resultado principal es depende en los nuevos resultados de desaparición para los imanantes en el anillo polinómico del cuántico.
منابع مشابه
Kazhdan-lusztig Cells
These are notes for a talk on Kazhdan-Lusztig Cells for Hecke Algebras. In this talk, we construct the Kazhdan-Lusztig basis for the Hecke algebra associated to an arbitrary Coxeter group, in full multiparameter generality. We then use this basis to construct a partition of the Coxeter group into the Kazhdan-Lusztig cells and describe the corresponding cell representations. Finally, we speciali...
متن کاملCalibrated representations of a ne Hecke algebras
This paper introduces the notion of calibrated representations for aane Hecke algebras and classiies and constructs all nite dimensional irreducible calibrated representations. The main results are that (1) irreducible calibrated representations are indexed by placed skew shapes, (2) the dimension of an irreducible calibrated representation is the number of standard Young tableaux corresponding...
متن کاملHecke Algebra Characters and Immanant Conjectures
The main purpose of this article is to announce and provide supporting evidence for two conjectures about the characters of the Hecke algebra Hn(q) of type An_I' evaluated at elements of its Kazhdan-Lusztig basis. In addition, we prove a conjectured immanant inequality for Jacobi-Trudi matrices (definitions below) and show how our conjectures would imply stronger inequalities of a similar kind....
متن کاملMONOMIAL BASES FOR q-SCHUR ALGEBRAS
Using the Beilinson-Lusztig-MacPherson construction of the quantized enveloping algebra of gln and its associated monomial basis, we investigate q-Schur algebras Sq(n, r) as “little quantum groups”. We give a presentation for Sq(n, r) and obtain a new basis for the integral q-Schur algebra Sq(n, r), which consists of certain monomials in the original generators. Finally, when n > r, we interpre...
متن کاملCalibrated representations of affine Hecke algebras
This paper introduces the notion of calibrated representations for affine Hecke algebras and classifies and constructs all finite dimensional irreducible calibrated representations. The main results are that (1) irreducible calibrated representations are indexed by placed skew shapes, (2) the dimension of an irreducible calibrated representation is the number of standard Young tableaux correspo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010